Category Archives: Telecommunications

For Huawei and ZTE, Suspicions Persist

About two weeks ago, the U.S. House Permanent Select Committee on Intelligence held a hearing on “the national-security threats posed by Chinese telecom companies doing business in the United States.” The Chinese telecom companies called to account were Huawei and ZTE, each of which is keen to expand its market reach into the United States.

It is difficult to know what to believe when it comes to the charges leveled against Huawei and ZTE. The accusations against the companies, which involve their alleged capacity to conduct electronic espionage for China and their relationships with China’s government, are serious and plausible but also largely unproven.

Frustrated Ambitions

One would hope these questions could be settled definitively and expeditiously, but this inquiry looks be a marathon rather than a sprint. Huawei and ZTE want to expand in the U.S. market, but their ambitions are thwarted by government concerns about national security.  As long as the concerns remain — and they show no signs of dissipating soon — the two Chinese technology companies face limited horizons in America.

Elsewhere, too, questions have been raised. Although Huawei recently announced a significant expansion in Britain, which received the endorsement of the government there, it was excluded from participating in Australia’s National Broadband Network (NBN). The company also is facing increased suspicion in India and in Canada, countries in which it already has made inroads.

Vehement Denials 

Huawei and ZTE say they’re facing discrimination and protectionism in the U.S.  Both seek to become bigger players globally in smartphones, and Huawei has its sights set on becoming a major force in enterprise networking and telepresence.

Obviously, Huawei and ZTE deny the allegations. Huawei has said it would be self-destructive for the company to function as an agent or proxy of Chinese-government espionage. Huawei SVP Charles Ding, as quoted in a post published on the Forbes website, had this to say:

 As a global company that earns a large part of its revenue from markets outside of China, we know that any improper behaviour would blemish our reputation, would have an adverse effect in the global market, and ultimately would strike a fatal blow to the company’s business operations. Our customers throughout the world trust Huawei. We will never do anything that undermines that trust. It would be immensely foolish for Huawei to risk involvement in national security or economic espionage.

Let me be clear – Huawei has not and will not jeopardise our global commercial success nor the integrity of our customers’ networks for any third party, government or otherwise. Ever.

A Telco Legacy 

Still, questions persist, perhaps because Western countries know, from their own experience, that telecommunications equipment and networks can be invaluable vectors for surveillance and intelligence-gathering activities. As Jim Armitage wrote in The Independent, telcos in Europe and the United States have been tapped repeatedly for skullduggery and eavesdropping.

In one instance, involving the tapping  of 100 mobile phones belonging to Greek politicians and senior civil servants in 2004 and 2005, a Vodafone executive was found dead of an apparent suicide. In another case, a former head of security at Telecom Italia fell off a Naples motorway bridge to his death in 2006 after discovering the illegal wiretapping of 5,000 Italian journalists, politicians, magistrates, and — yes — soccer players.

No question, there’s a long history of telco networks and the gear that runs them being exploited for “spookery” (my neologism of the day) gone wild. That historical context might explain at least some of the acute and ongoing suspicion directed at Chinese telco-gear vendors by U.S. authorities and politicians.

Avaya Executive Departures, Intrigue Continue

Like many other vendors, Avaya showed off its latest virtualized wares at VMworld in San Francisco this week. While putting its best face forward at VMware’s annual conference and exhibition, Avaya also experienced further behind-the-scenes executive intrigue.

Sources report that Carelyn Monroe, VP of Global Partner Support Services, resigned from the company last Friday. Monroe is said to have reported to Mike Runda, SVP and president of Avaya Client Services. She joined Avaya in 2009, coming over from Nortel.

Meanwhile, across the pond, Avaya has suffered another defection. James Stevenson, described as a “business-services expert” in a story published online by CRN ChannelWeb UK, has left Avaya to become director of operations for reseller Proximity Communications.

Prior to the departures of Monroe and Stevenson, CFO Anthony Massetti bolted for the exit door immediately after Avaya’s latest inauspicious quarterly results were filed with the Securities and Exchange Commission (SEC). Massetti was replaced by Dave Vellequette, who has a long history of of working alongside Avaya CEO Kevin Kennedy.

In some quarters, Kennedy’s reunion with Vellequette is being construed as a circle-the-wagons tactic in which the besieged CEO attempts to surround himself with steadfast loyalists. It probably won’t be long before we see a “Hitler parody” on YouTube about Avaya’s plight (like this one on interoperability problems with unified communications).

Juniper Steers QFabric Toward Midmarket

In taking its QFabric to mid-sized data centers, Juniper Networks has made the right decision. In my discussions with networking cognoscenti at customer organizations large and small, Juniper’s QFabric technology often engenders praise and respect. It also was perceived as beyond the reach, architecturally and financially, of many shops.

Now Juniper is attempting to get to those mid-market admirers that previously saw QFabric as above their station.

Quest for Growth

To be sure, Juniper targeted the original QFabric, the QFX 3000-G, at large enterprises and high-end service providers, addressing applications such as high-performance computing (HPC), high-frequency trading in financial services, and cloud services. In a blog post discussing the downsized QFabric QFX3000-M, R.K. Anand, EVP and general manager of Juniper’s Data Center Business Unit, writes, “ . . . the beauty of the “M” configuration is that it’s ideal for satellite data centers, new 10GbE pods and space-constrained data center environments.”

Juniper is addressing a gap here, and it’s a wise move. Still, some wonder whether it has come too late. It’s a fair question.

In pursuing the midmarket, Juniper is ratcheting up its competitive profile against the likes of Cisco Systems and HP, which also have been targeting the mid market for growth, a commodity in short supply in the enterprise-networking space these days.

Analysts are concerned about maturation and slow growth in the networking market, as well as increasing competition and “challenging” — that’s an analyst-speak euphemism for crappy –macroeconomic conditions.

Belated . . . Or Just Too Late

At its annual shindig for analysts, Juniper did little to allay those concerns, though the company understandably put an optimistic spin on its product strategy, competitive positioning, and ability to execute.  Needham and Company analyst Alex Henderson summarized proceedings as follows:

“Despite an upbeat tone to Juniper’s strategy positioning and its new product development story, management reset its long term revenue and margin targets to a lower level. Juniper lowered its revenue growth targets to 9-12% from a much older growth target of 20% plus. In addition, management lowered gross margin target to 63-66% from the prior target of 65-67%.”

Like its competitors, Juniper is eager to find growth markets, preferably those that will support robust margins. A smaller QFabric won’t necessarily provide a panacea for Juniper’s market dilemma, but it certainly won’t hurt.

It also gives Juniper’s channel partners reason to call on customers that might have been off their radar previously. As Dhritiman Dasgupta, senior director of Enterprise System and Routing at Juniper, told The VAR Guy, the channel is calling the new QFX-3000-M “their version” of the product.

We’ll have to see whether Juniper’s QFabric for mid-sized data centers qualifies as a belated arrival or as a move that simply came too late.

Tidbits: Cuts at Nokia, Rumored Cuts at Avaya

Nokia

Nokia says it will shed about 10,000 employees globally by the end of 2013 in a bid to reduce costs and streamline operations.

The company will close research-and-development centers, including one in Burnaby, British Columbia, and another in Ulm, Germany. Nokia will maintain its R&D operation in Salo, Finland, but it will close its manufacturing plant there.

Meanwhile, in an updated outlook, Nokia reported that “competitive industry dynamics” in the second quarter would hurt its smartphone sales more than originally anticipated. The company does not expect a performance improvement in the third quarter, and that dour forecast caused analysts and markets to react adversely.

Selling its bling-phone Vertu business to Swedish private-equity group EQT will help generate some cash, but, Nokia will retain a 10-percent minority stake in Vertu. Nokia probably should have said a wholesale goodbye to its bygone symbol of imperial ostentation.

Nokia might be saying goodbye to other businesses, too.  We shall see about Nokia-Siemens Networks, which I believe neither of the eponymous parties wants to own and would eagerly sell if somebody offering more than a bag of beans and fast-food discount coupons would step forward.

There’s no question that Nokia is bidding farewell to three vice presidents. Stepping down are Mary McDowell (mobile phones), Jerri DeVard (marketing), and Niklas Savander (EVP markets).

But Nokia is buying, too, shelling out an undisclosed sum for imaging company Scalado, looking to leverage that company’s technology to enhance the mobile-imaging and visualization capabilities of its Nokia Lumia smartphones.

Avaya

Meanwhile, staff reductions are rumored to be in the works at increasingly beleaguered Avaya.  Sources says a “large-scale” jobs cut is possible, with news perhaps surfacing later today, just two weeks before the end of the company’s third quarter.

Avaya’s financial results for its last quarter, as well as its limited growth profile and substantial long-term debt, suggested that hard choices were inevitable.

Debating SDN, OpenFlow, and Cisco as a Software Company

Greg Ferro writes exceptionally well, is technologically knowledgeable, provides incisive commentary, and invariably makes cogent arguments over at EtherealMind.  Having met him, I can also report that he’s a great guy. So, it is with some surprise that I find myself responding critically to his latest blog post on OpenFlow and SDN.

Let’s start with that particular conjunction of terms. Despite occasional suggestions to the contrary, SDN and OpenFlow are not inseparable or interchangeable. OpenFlow is a protocol, a mechanism that allows a server, known in SDN parlance as a controller, to interact with and program flow tables (for packet forwarding) on switches. It facilitates the separation of the control plane from the data plane in some SDN networks.

But OpenFlow is not SDN, which can be achieved with or without OpenFlow.  In fact, Nicira Networks recently announced two SDN customer deployments of its Network Virtualization Platform (NVP) — at DreamHost and at Rackspace, respectively — and you won’t find mention of OpenFlow in either press release, though OpenStack and its Quantum networking project receive prominent billing. (I’ll be writing more about the Nicira deployments soon.)

A Protocol in the Big Picture 

My point is not to diminish or disparage OpenFlow, which I think can and will be used gainfully in a number of SDN deployments. My point is that we have to be clear that the bigger picture of SDN is not interchangeable with the lower-level functionality of OpenFlow.

In that respect, Ferro is absolutely correct when he says that software-defined networking, and specifically SDN controller and application software, are “where the money is.” He conflates it with OpenFlow — which may or may not be involved, as we already have established — but his larger point is valid.  SDN, at the controller and above, is where all the big changes to the networking model, and to the industry itself, will occur.

Ferro also likely is correct in his assertion that OpenFlow, in and of itself, will  not enable “a choice of using low cost network equipment instead of the expensive networking equipment that we use today. “ In the near term, at least, I don’t see major prospects for change on that front as long as backward compatibility, interoperability with a bulging bag of networking protocols, and the agendas of the networking old guard are at play.

Cisco as Software Company

However, I think Ferro is wrong when he says that the market-leading vendors in switching and routing, including Cisco and Juniper, are software companies. Before you jump down my throat, presuming that’s what you intend to do, allow me to explain.

As Ferro says, Cisco and Juniper, among others, have placed increasing emphasis on the software features and functionality of their products. I have no objection there. But Ferro pushes his argument too far and suggests that the “networking business today is mostly a software business.”  It’s definitely heading in that direction, but Cisco, for one, isn’t there yet and probably won’t be for some time.  The key word, by the way, is “business.”

Cisco is developing more software these days, and it is placing more emphasis on software features and functionality, but what it overwhelmingly markets and sells to its customers are switches, routers, and other hardware appliances. Yes, those devices contain software, but Cisco sells them as hardware boxes, with box-oriented pricing and box-oriented channel programs, just as it has always done. Nitpickers will note that Cisco also has collaboration and video software, which it actually sells like software, but that remains an exception to the rule.

Talks Like a Hardware Company, Walks Like a Hardware Company

For the most part, in its interactions with its customers and the marketplace in general, Cisco still thinks and acts like a hardware vendor, software proliferation notwithstanding. It might have more software than ever in its products, but Cisco is in the hardware business.

In that respect, Cisco faces the same fundamental challenge that server vendors such as HP, Dell, and — yes — Cisco confront as they address a market that will be radically transformed by the rise of cloud services and ODM-hardware-buying cloud service providers. Can it think, figuratively and literally, outside the box? Just because Cisco develops more software than it did before doesn’t mean the answer is yes, nor does it signify that Cisco has transformed itself into a software vendor.

Let’s look, for example, at Cisco’s approach to SDN. Does anybody really believe that Cisco, with its ongoing attachment to ASIC-based hardware differentiation, will move toward a software-based delivery model that places the primary value on server-based controller software rather than on switches and routers? It’s just not going to happen, because  it’s not what Cisco does or how it operates.

Missing the Signs 

And that bring us to my next objection.  In arguing that Cisco and others have followed the market and provided the software their customers want, Ferro writes the following:

“Billion dollar companies don’t usually miss the obvious and have moved to enhance their software to provide customer value.”

Where to begin? Well, billion-dollar companies frequently have missed the obvious and gotten it horribly wrong, often when at least some individuals within the companies in question knew that their employer was getting it horribly wrong.  That’s partly because past and present successes can sow the seeds of future failure. As in Clayton M. Christensen’s classic book The Innovator’s Dilemma, industry leaders can have their vision blinkered by past successes, which prevent them from detecting disruptive innovations. In other cases, former market leaders get complacent or fail to acknowledge the seriousness of a competitive threat until it is too late.

The list of billion-dollar technology companies that have missed the obvious and failed spectacularly, sometimes disappearing into oblivion, is too long to enumerate here, but some  names spring readily to mind. Right at the top (or bottom) of our list of industry ignominy, we find Nortel Networks. Once a company valued at nearly $400 billion, Nortel exists today only in thoroughly digested pieces that were masticated by other companies.

Is Cisco Decline Inevitable?

Today, we see a similarly disconcerting situation unfolding at Research In Motion (RIM), where many within the company saw the threat posed by Apple and by the emerging BYOD phenomenon but failed to do anything about it. Going further back into the annals of computing history, we can adduce examples such as Novell, Digital Equipment Corporation, as well as the raft of other minicomputer vendors who perished from the planet after the rise of the PC and client-sever computing. Some employees within those companies might even have foreseen their firms’ dark fates, but the organizations in which they toiled were unable to rescue themselves.

They were all huge successes, billion-dollar companies, but, in the face of radical shifts in industry and market dynamics, they couldn’t change who and what they were.  The industry graveyard is full of the carcasses of company’s that were once enormously successful.

Am I saying this is what will happen to Cisco in an era of software-defined networking? No, I’m not prepared to make that bet. Cisco should be able to adapt and adjust better than the aforementioned companies were able to do, but it’s not a given. Just because Cisco is dominant in the networking industry today doesn’t mean that it will be dominant forever. As the old investment disclaimer goes, past performance does not guarantee future results. What’s more, Cisco has shown a fallibility of late that was not nearly as apparent in its boom years more than a decade ago.

Early Days, Promising Future

Finally, I’m not sure that Ferro is correct when he says Open Network Foundation’s (ONF) board members and its biggest service providers, including Google, will achieve CapEx but not OpEx savings with SDN. We really don’t know whether these companies are deriving OpEx savings because they’re keeping what they do with their operations and infrastructure highly confidential. Suffice it to say, they see compelling reasons to move away from buying their networking gear from the industry’s leading vendors, and they see similarly compelling reasons to embrace SDN.

Ferro ends his piece with two statements, the first of which I agree with wholeheartedly:

“That is the future of Software Defined Networking – better, dynamic, flexible and business focussed networking. But probably not much cheaper in the long run.”

As for that last statement, I believe there is insufficient evidence on which to render a verdict. As we’ve noted before, these are early days for SDN.

Report from Network Field Day 3: Infineta’s “Big Traffic” WAN Optimization

Last week, I had the privilege of serving as a delegate a Network Field Day 3 (NFD3), part of Tech Field Day.  It actually spanned two days, last Thursday and Friday, and it truly was a memorable and rewarding experience.

I learned a great deal from the vendor presentations (from SolarWinds, NEC, Arista, Infineta on Thursday; from Cisco and Spirent on Friday), and I learned just as much from discussions with my co-delegates, whom I invite you to get to know on Twitter and on their blogs.

The other delegates were great people, with sharp minds and exceptional technical aptitude. They were funny, too. As I said above, I was honored and privileged to spend time in their company.

Targeting “Big Traffic” 

In this post, I will cover our visit with Infineta Systems. Other posts, either directly about NFD3 or indirectly about the information I gleaned from the NFD3 presentations, will follow at later dates as circumstances and time permit.

Infineta contends that WAN optimization comprises two distinct markets: WAN optimization for branch traffic, and WAN optimization for what Infineta terms “big traffic.” Each has different characteristics.  WAN optimization for branch traffic is typified by relatively low bandwidth and going over relatively long distances, whereas WAN optimization for “big traffic” is marked by high bandwidth and traversal of various distances. Given their characteristics, Infineta asserts, the two types of WAN optimization require different system architectures.

Moreover, the two distinct types of WAN optimization also feature different categories of application traffic. WAN optimization for branch traffic is characterized by user-to-machine traffic, which involves a human directly interacting with a device and an application. Conversely, WAN optimization for big traffic, usually data-center to data-center in orientation, features machine-to-machine traffic.

Because different types of buyers involved, the sales processes for the two types of WAN optimization are different, too.

Applications and Use Cases

Infineta has chosen to go big-game hunting in the WAN-optimization market. It’s chasing Big Traffic with its Data Mobility Switch (DMS), equipped with 10-Gbps of processing capacity and a reputed ROI payback of less than a year.

Deployment of DMS is best suited for application environments that are bandwidth intensive, latency sensitive, and protocol inefficient. Applications that map to those characteristics include high-speed replication, large-scale data backup and archiving, huge file transfers, and the scale out of growing application traffic.  That means deployment typically occurs at between two or more data centers that can be hundreds or even thousands of miles apart, employing OC-3 to OC-192 WAN connections.

In Infineta’s presentation to us, the company featured use cases that covered virtual machine disk (VMDK) and database protection as well as high-speed data replication. In each instance, Infineta claimed compelling results in overall performance improvement, throughput, and WAN-traffic reduction.

Dedupe “Crown Jewels”

So, you might be wondering, how does Infineta attain those results? During a demonstration of DMS in action, Infineta tools us through the technology in considerable detail. Infineta says says its deduplication technologies are its “crown jewels,” and it has filed and received a mathematically daunting patent to defend them.

At this point, I need to make brief detour to explain that Infineta’s DMS is  hardware-based product that uses field programmable gate arrays (FPGAs), whereas Infineta’s primary competitors use software that runs on off-the-shelf PC systems. Infineta decided against a software-based approach — replete with large dictionaries and conventional deduplication algorithms — because it ascertained that the operational overhead and latency implicit in that approach inhibited the performance and scalability its customers required for their data-center applications.

To minimize latency, then, Infineta’s DMS was built with FPGA hardware designed around a multi-Gigabit switch fabric. The DMS is the souped-up vehicle that harnesses the power of the company’s approach to deduplication , which is intended to address traditional deduplication bottlenecks relating to disk I/O bandwidth, CPU, memory, and synchronization.

Infineta says its approach to deduplication is typified by an overriding focus on minimizing sequentiality and synchronization, buttressed and served by massive parallelism, computational simplicity, and fixed-size dictionary records.

Patent versus Patented Obtuseness

The company’s founder, Dr.K.V.S. (Ram) Ramarao, then explained Infineta’s deduplication patent. I wish I could convey it to you. I did everything in my limited power to grasp its intricacies and nuances — I’m sure everybody in the room could hear my rickety, wooden mental gears turning and smell the wood burning — but my brain blew a fuse and I lost the plot. Have no fear, though: Derick Winkworth, the notorious @cloudtoad on Twitter, likely will addressing Infineta’s deduplication patent in a forthcoming post at Packet Pushers. He brings a big brain and an even bigger beard to the subject, and he will succeed where I demonstrated only patented obtuseness.

Suffice it to say, Infineta says the techniques described in its patent result in the capacity to scale linearly in lockstep with additional computing resources, effectively obviating the aforementioned bottlenecks relating to disk I/O bandwidth, CPU, memory, and synchronization. (More information on Infineta’s Velocity Dedupe Engine is available on the company’s website.)

Although its crown jewels might reside in deduplication, Infineta also says DMS delivers the goods in TCP optimization, keeping the pipe full across all active connections.

Not coincidentally, Infineta claims to significantly get the measure of its competitors in areas such as throughput, latency, power, space, and “dollar-per-Mpbs” delivered. I’m sure those competitors will take issue with Infineta’s claims. As always, the ultimate arbiters are the customers that constitute the demand side of the marketplace.

Fast-Growing Market

Infineta definitely has customers — NaviSite, now part of Time Warner, among them — and if the exuberance and passion of its product managers and technologists are reliable indicators, the company will more than hold its own competitively as it addresses a growing market for WAN optimization between data centers.

Disclosure: As a delegate, my travel and accommodations were covered by Gestalt IT, which is remunerated by vendors for presentation slots at Network Field Day. Consequently, my travel costs (for airfare, for hotel accommodations, and for meals) were covered indirectly by the vendors, but no other recompense, except for the occasional tchotchke, was accepted by me from the vendors involved. I was not paid for my time, nor was I paid to write about the presentations I witnessed. 

Why Many Networking Professionals Will Resist Software-Defined Networking

In the long run, I think software defined networking (SDN) is destined for tremendous success, not only at massive cloud service providers, where it already is finding favor and increased adoption, but also at smaller service providers and even — with time and perseverance — at enterprises.

It just might not happen as quickly as some expect.

Shape of Networking to Come

In a presentation last autumn at the Open Networking Summit, Nicira co-founder Nick McKeown asserted that SDN would shape the future of networking in several key respects. He said it would do so by empowering network owners and operators, by speeding the pace of innovation, by diversifying the supply chain, and by delivering a robust foundation for programmability predicated on a standardized forwarding abstraction and provable network properties.

On the whole, McKeown probably will be right, and his technological reasoning seems entirely reasonable. As in any market, however, the commercial appeal of SDN will be determined by human factors as well as by technological considerations.

The enterprise market will be the toughest nut to crack, though, and not only because the early agenda of SDN, as defined by the board members of the Open Networking Foundation (ONF) and others, has been focused resolutely on providing solutions for the largest of cloud service providers.

Winning Hearts and Minds

Capturing enterprise hearts and minds will be difficult for SDN, and it will be hard not just because of technological challenges, such as backward compatibility with (and investments in) existing network infrastructure, but also because of the cultural milieu and entrenched mindset of enterprise networking professionals.

I’ve written before, on two occasions actually, about how human and institutional resistance to change can strongly inhibit the commercial adoption of technologies with otherwise compelling credentials and qualifications. Generally, people fear change, especially when they suspect that the change in question will affect them adversely.

And make no mistake, software-defined networking will inspire fear and resistance in some quarters, enterprise networking professionals prominent among them.

Networking’s Cultural Artifacts

Jennifer Rexford, professor of computer science at Princeton University and a former AT&T Research staffer, wrote that one of her colleagues once observed that computer-networking people “really loved their artifacts.” Those artifacts probably would include the many distributed routing protocols that have proliferated over the years.

Software-defined networking wants to loosen emotional attachment to those artifacts, just as it wants to jettison the burgeoning bag of protocols that distinguishes networking from computer programming and other disciplines.  But many networking professionals, including those in enterprise IT departments, see their mastery of complex protocols as hallmarks of who they are and what they do.

Getting the Network “Out of the Way”

Yet there’s more to it than that. Consider the workplace implications of software-defined networks. The whole idea of SDN is to make networks programmable, to put applications and those who program and manage them in the driver’s seat, and to get the network “out of the way” of the sweeping virtualized progress that has enveloped all other data-center infrastructure.

To survive and thrive in this brave new virtual world, networking professionals might have to become more like programmers. From an organizational standpoint, even though there are compelling business and technological reasons to adopt SDN, resistance from the fraternity of networking professionals will be stiff and difficult to overcome.

In the realm of the super-sized data centers at Google and elsewhere, this isn’t a serious problem. The concepts associated with “DevOps” and with thinking outside boxes, departmental and otherwise, thrive in those precincts. Google long has eschewed the purchase of servers and networking gear from vendors, and it does things its own way. To greater or lesser degrees, other large cloud-service providers now dance to a similar beat. But the enterprise? Well, that’s a different animal altogether.

Vendors in No Hurry

Some of the new SDN startups already are meeting with pockets of resistance. They’re seeing cleavage — schism might be too strong a word, though maybe not — between cloud architects and server-virtualization specialists on one side of the house and network professionals on the opposing side. The two camps see things differently,with perspectives and priorities that are difficult to reconcile. (There are exceptions to the rule, of course, with some networking professionals eager to embrace SDN, but they currently are in the minority.)

As we’ve seen, the board of directors at the Open Networking Foundation (ONF) isn’t concerned about how quickly the enterprise gets with the SDN program. I also would suggest that most networking vendors, which are excluded from the ONF’s board, aren’t in a hurry to push an SDN agenda that features logically centralized, server-based controllers. You’ll see SDN from these vendors, yes, but the control plane will be distributed until such time as enterprises and service providers (not on the ONF board) demand otherwise. That will be a while, I suspect.

Deferred Gratification

We tend to underestimate resistance to change in this industry.  Gartner devised the “trough of disillusionment”  and the technology hype cycle for good reason. Some technologies remain in that basin longer than others. Some never emerge from what becomes a bottomless pit rather than a trough.

That won’t happen to SDN.  As I wrote earlier, I think it has a bright future. Don’t be surprised, though, if the hype gets ahead of the reality. When it comes to technologies and markets, our inherent optimism occasionally is thwarted by our intrinsic resistance to change.