Category Archives: Dell

Direct from ODMs: The Hardware Complement to SDN

Subsequent to my return from Network Field Day 3, I read an interesting article published by Wired that dealt with the Internet giants’ shift toward buying networking gear from original design manufacturers (ODMs) rather than from brand-name OEMs such as Cisco, HP Networking, Juniper, and Dell’s Force10 Networks.

The development isn’t new — Andrew Schmitt, now an analyst at Infonetics, wrote about Google designing its own 10-GbE switches a few years ago — but the story confirmed that the trend is gaining momentum and drawing a crowd, which includes brokers and custom suppliers as well as increasing numbers of buyers.

In the Wired article, Google, Microsoft, Amazon, and Facebook were explicitly cited as web giants buying their switches directly from ODMs based in Taiwan and China. These same buyers previously procured their servers directly from ODMs, circumventing brand-name server vendors such as HP and Dell.  What they’re now doing with networking hardware, then, is a variation on an established theme.

The ONF Connection

Just as with servers, the web titans have their reasons for going directly to ODMs for their networking hardware. Sometimes they want a simpler switch than the brand-name networking vendors offer, and sometimes they want certain functionality that networking vendors do not provide in their commercial products. Most often, though, they’re looking for cheap commodity switches based on merchant silicon, which has become more than capable of handling the requirements the big service providers have in mind.

Software is part of the picture, too, but the Wired story didn’t touch on it. Look at the names of the Internet companies that have gone shopping for ODM switches: Google, Microsoft, Facebook, and Amazon.

What do those companies have in common besides their status as Internet giants and their purchases of copious amounts of networking gear? Yes, it’s true that they’re also cloud service providers. But there’s something else, too.

With the exception of Amazon, the other three are board members in good standing of the Open Networking Foundation (ONF). What’s more,  even though Amazon is not an ONF board member (or even a member), it shares the ONF’s philosophical outlook in relation to making networking infrastructure more flexible and responsive, less complex and costly, and generally getting it out of the way of critical data-center processes.

Pica8 and Cumulus

So, yes, software-defined networking (SDN) is the software complement to cloud-service providers’ direct procurement of networking hardware from ODMs.  In the ONF’s conception of SDN, the server-based controller maps application-driven traffic flows to switches running OpenFlow or some other mechanism that provides interaction between the controller and the switch. Therefore, switches for SDN environments don’t need to be as smart as conventional “vertically integrated” switches that combine packet forwarding and the control plane in the same box.

This isn’t just guesswork on my part. Two companies are cited in the Wired article as “brokers” and “arms dealers” between switch buyers and ODM suppliers. Pica8 is one, and Cumulus Networks is the other.

If you visit the Pica8 website,  you’ll see that the company’s goal is “to commoditize the network industry and to make the network platforms easy to program, robust to operate, and low-cost to procure.” The company says it is “committed to providing high-quality open software with commoditized switches to break the current performance/price barrier of the network industry.” The company’s latest switch, the Pronto 3920, uses Broadcom’s Trident+ chipset, which Pica8 says can be found in other ToR switches, including the Cisco Nexus 3064, Force10 S4810, IBM G8264, Arista 7050S, and Juniper QFC-3500.

That “high-quality open software” to which Pica8 refers? It features XORP open-source routing code, support for Open vSwitch and OpenFlow, and Linux. Pica8 also is a relatively longstanding member of ONF.

Hardware and Software Pedigrees

Cumulus Networks is the other switch arms dealer mentioned in the Wired article. There hasn’t been much public disclosure about Cumulus, and there isn’t much to see on the company’s website. From background information on the professional pasts of the company’s six principals, though, a picture emerges of a company that would be capable of putting together bespoke switch offerings, sourced directly from ODMs, much like those Pica8 delivers.

The co-founders of Cumulus are J.R. Rivers, quoted extensively in the Wired article, and Nolan Leake. A perusal of their LinkedIn profiles reveals that both describe Cumulus as “satisfying the networking needs of large Internet service clusters with high-performance, cost-effective networking equipment.”

Both men also worked at Cisco spin-in venture Nuova Systems, where Rivers served as vice president of systems architecture and Leake served in the “Office of the CTO.” Rivers has a hardware heritage, whereas Leake has a software background, beginning his career building a Java IDE and working at senior positions at VMware and 3Leaf Networks before joining Nuova.

Some of you might recall that 3Leaf’s assets were nearly acquired by Huawei, before the Chinese networking company withdrew its offer after meeting with strenuous objections from the Committee on Foreign Investment in the United States (CFIUS). It was just the latest setback for Huawei in its recurring and unsuccessful attempts to acquire American assets. 3Com, anyone?

For the record, Leake’s LinkedIn profile shows that his work at 3Leaf entailed leading “the development of a distributed virtual machine monitor that leveraged a ccNUMA ASIC to run multiple large (many-core) single system image OSes on a Infiniband-connected cluster of commodity x86 nodes.”

For Companies Not Named Google

Also at Cumulus is Shrijeet Mukherjee, who serves as the startup company’s vice president of software engineering. He was at Nuova, too, and worked at Cisco right up until early this year. At Cisco, Mukherjee focused on” virtualization-acceleration technologies, low-latency Ethernet solutions, Fibre Channel over Ethernet (FCoE), virtual switching, and data center networking technologies.” He boasts of having led the team that delivered the Cisco Virtualized Interface Card (vNIC) for the UCS server platform.

Another Nuova alumnus at Cumulus is Scott Feldman, who was employed at Cisco until May of last year. Among other projects, he served in a leading role on development of “Linux/ESX drivers for Cisco’s UCS vNIC.” (Do all these former Nuova guys at Cumulus realize that Cisco reportedly is offering big-bucks inducements to those who join its latest spin-in venture, Insieme?)

Before moving to Nuova and then to Cisco, J.R. Rivers was involved with Google’s in-house switch design. In the Wired article, Rivers explains the rationale behind Google’s switch design and the company’s evolving relationship with ODMs. Google originally bought switches designed by the ODMs, but now it designs its own switches and has the ODMs manufacture them to the specifications, similar to how Apple designs its iPads and iPhones, then  contracts with Foxconn for assembly.

Rivers notes, not without reason, that Google is an unusual company. It can easily design its own switches, but other service providers possess neither the engineering expertise nor the desire to pursue that option. Nonetheless, they still might want the cost savings that accrue from buying bare-bones switches directly from an ODM. This is the market Cumulus wishes to serve.

Enterprise/Cloud-Service Provider Split

Quoting Rivers from the Wired story:

“We’ve been working for the last year on opening up a supply chain for traditional ODMs who want to sell the hardware on the open market for whoever wants to buy. For the buyers, there can be some very meaningful cost savings. Companies like Cisco and Force10 are just buying from these same ODMs and marking things up. Now, you can go directly to the people who manufacture it.”

It has appeal, but only for large service providers, and perhaps also for very large companies that run prodigious server farms, such as some financial-services concerns. There’s no imminent danger of irrelevance for Cisco, Juniper, HP, or Dell, who still have the vast enterprise market and even many service providers to serve.

But this is a trend worth watching, illustrating the growing chasm between the DIY hardware and software mentality of the biggest cloud shops and the more conventional approach to networking taken by enterprises.

Still Early Days in SDN Ecosystem

Jason Edelman has provided a helpful overview of the software-defined networking (SDN) ecosystem and the vendors currently active within it. Like any form chart, though, it’s a snapshot in time, and therefore subject to change, as I’m sure Edelman would concede.

Still, what Edelman has delivered is a useful contextual framework to understand where many vendors stand today, where “stealth” vendors might attempt to make their marks shortly, and where and how the overall space might evolve.

Edelman presents the somewhat-known entities — Nicira, Big Switch, NEC, and Embrane (L4-7) at the applications/services layer — and he also addresses  vendors providing controllers, where no one platform has gained an appreciable commercial advantage because the market remains nascent.  He also covers the “switch infrastructure” vendors, which include HP Networking, Netgear, IBM, Pica8, NEC, Arista, Juniper, and others. (In a value-based analysis of the SDN market, “switch infrastructure” is the least interesting layer, but it is essential to have an abundance of interoperable hardware on the market.)

Cards Still to be Played

The real battle, from which it might take considerable time for clears winners to emerge, will occur at the two upper layers, where controller vendors will be looking to win the patronage of purveyors of applications and services. At the moment, the picture is fuzzy. It remains possible that an eventual winner of the inevitable controller-market shakeout has yet to enter the frame.

In that regard, look for established networking players and new entrants to make some noise in the year ahead. Edelman has listed many of them, and I’ve heard that a few more are lurking in the shadows. Names that  are likely to be in the news soon include Plexxi, LineRate Systems (another L4-7 player, it seems), and Ericsson (with its OpenFlow/MPLS effort).

These are, as the saying goes, early days.

Xsigo’s Virtualized Infrastructure Draws Cisco’s Fire

Long involved in the discussion about and the market for converged I/O, Xsigo wants to be part of a larger debate and a potentially much bigger market opportunity.

Xsigo said last summer that its goal was to virtualize components of data-center networking, just as servers and storage have been virtualized previously. Wait, some of you might say, isn’t that the purview of software-defined networking (SDN) vendors? Well, yes, that’s true, and while there are obvious differences between what Xsigo delivers and what’s being put on the table by SDN purveyors, Xsigo thinks it has a compelling story to tell.

Xsigo’s I/O Director started off addressing virtualization and data transfer between servers and storage. Last summer, though, its I/O Director stepped up to the server-to-server challenge, simultaneously extending its incursion onto server turf while making a claim on networking territory.

Cisco Takes Notice

That got the attention of Cisco Systems, which offers networking and servers, and a relatively vehement vendetta ensued between the two companies. Xsigo probably got more benefit than Cisco did from the mutual antagonism, if only because Cisco’s public reaction to Xsigo indicated that the smaller player had done enough damage to be considered a threat by the networking giant. In aiming its competitive marketing guns at Xsigo and blasting away, Cisco explicitly acknowledged Xsigo and implicitly conferred added legitimacy in the process.

At any rate, with the addition of the Xsigo Server Fabric, which began shipping in earnest toward the end of last year, the Xsigo I/O Director now allows servers and devices to connect to each other directly without going over the network. As a result, adding a virtual machine (VM) doesn’t involve using an IP address or setting up a virtual LAN (VLAN).  That’s addressed by I/O director and its virtual server interfaces.

Market analyst Zeus Kerravla has said that the Xsigo Server Fabric creates a new infrastructure atop the physical network, which is true enough. The Xsigo Server Fabric obviates the access-layer network, allowing servers and their VMs to communicate directly.

Bumping Layers

Xsigo contends its Server Fabric also effectively eliminates the aggregation layer. Xsigo says its infrastructure extends as for as the core network, where it is compatible with switches from any of the major players, including Cisco and Juniper. As such, Xsigo says its technology transforms a hierarchical network into a pool of bandwidth that can be used to connect virtualized resources in a data center.

By reducing the numbers of switch ports and infrastructure layers — the company says there’s just one layer of connectivity management between the OS or hypervisor and the core network with its approach as compared to as many as four layers in the Cisco model — Xsigo says its business model is the exact opposite of Cisco’s. Further to that point, Xsigo says that it is open, acting as a transparent conduit moving data between servers and the network core, whereas it alleges Cisco is not. Finally, Xsigo says it has no server agenda, whereas Cisco pushes its own servers as part of its Unified Computing System (UCS) for data-center virtualization.

Playing Its Part

Having no server agenda and taking a cut of the networking pie seem to have resulted in a go-it-alone strategy for Xsigo. It’s conceivable that market dynamics  and shifting vendor alliances could change that picture, but for now Xsigo doesn’t have a powerful technology-partner ecosystem to leverage.  As The Register noted, Xsigo has no OEM deals and is not thought to be an acquisition target of a major player, though Dell is responsible for about 20 percent of Xsigo’s sales and Oracle is cited as a potential acquirer in some quarters.

Xsigo customers, including some big names, have derived some significant cost savings from cutting down on cabling and getting much greater utilization from servers, virtual machines, and their network resources.

While not a member of the SDN fraternity, Xsigo wants us to know that it is playing its part in virtualized infrastructure for the data center.

Fear Compels HP and Dell to Stick with PCs

For better or worse, Hewlett-Packard remains committed to the personal-computer business, neither selling off nor spinning off that unit in accordance with the wishes of its former CEO. At the same, Dell is claiming that it is “not really a PC company,” even though it will continue to sell an abundance of PCs.

Why are these two vendors staying the course in a low-margin business? The popular theory is that participation in the PC business affords supply-chain benefits such as lower costs for components that can be leveraged across servers. There might be some truth to that, but not as much as you might think.

At the outset, let’s be clear about something: Neither HP nor Dell manufactures its own PCs. Manufacture of personal computers has been outsourced to electronics manufacturing services (EMS) companies and original design manufacturers (ODMs).

Growing Role of the ODM

The latter do a lot more than assemble and manufacture PCs. They also provide outsourced R&D and design for OEM PC vendors.  As such, perhaps the greatest amount of added value that a Dell or an HP brings to its PCs is represented by the name on the bezel (the brand) and the sales channels and customer-support services (which also can be outsourced) they provide.

Major PC vendors many years ago decided to transfer manufacturing to third-party companies in Taiwan and China. Subsequently, they also increasingly chose to outsource product design. As a result, ODMs design and manufacture PCs. Typically ODMs will propose various designs to the PC vendors and will then build the models the vendors select. The PC vendor’s role in the design process often comes down to choosing the models they want, sometimes with vendor-specified tweaks for customization and market differentiation.

In short, PC vendors such as HP and Dell don’t really make PCs at all. They rebrand them and sell them, but their involvement in the actual creation of the computers has diminished markedly.

Apple Bucks the Trend 

At this point, you might be asking: What about Apple? Simply put, unlike its PC brethren, Apple always has insisted on controlling and owning a greater proportion of the value-added ingredients of its products.

Unlike Dell and HP, for example, Apple has its own operating system for its computers, tablets, and smartphones. Also unlike Dell and HP, Apple did not assign hardware design to ODMs. In seeking costs savings from outsourced design and manufacture, HP and Dell sacrificed control over and ownership of their portable and desktop PCs. Apple wagered that it could deliver a premium, higher-cost product with a unique look and feel. It won the bet.

A Spurious Claim?

Getting back to HP, does it actually derive economies of scale for its server business from the purchase of PC components in the supply chain? It’s possible, but it seems unlikely. The ODMs with which HP contracts for design and manufacture of its PCs would get a much better deal on component costs than would HP, and it’s now standard practice for those ODMs to buy common components that can be used in the manufacture and assembly of products for all their brand-name OEM customers. It’s not clear to me what proportion of components in HP’s PCs are supplied and integrated by the ODMs, but I suspect the percentage is substantial.

On the whole, then, HP and Dell might be advancing a spurious argument about remaining in the PC business because it confers savings on the purchase of components that can used in servers.

Diagnosing the Addiction

If so, then, why would HP and Dell remain in the PC game? Well, the answer is right there on the balance sheets of both companies. Despite attempts at diversification, and despite initiatives to transform into the next IBM, each company still has a revenue reliance on – perhaps even an addiction to — PCs.

According to calculations by Sterne Agee analyst Shaw Wu, about 70 to 75 percent of Dell revenue is connected to the sale of PCs. (Dell derived about 43 percent of its revenue directly from PCs in its most recent quarter.) In relative terms, HP’s revenue reliance on PCs is not as great — about 30% of direct revenue — but, when one considers the relationship between PCs and related related peripherals, including printers, the company’s PC exposure is considerable.

If either company were to exit the PC business, shareholders would react adversely. The departure from the PC business would leave a gaping revenue hole that would not be easy to fill. Yes, relative margins and profitability should improve, but at the cost of much lower channel and revenue profiles. Then there is the question of whether a serious strategic realignment would actually be successful. There’s risk in letting go of a bird in hand for one that’s not sure to be caught in the bush.

ODMs Squeeze Servers, Too

Let’s put aside, at least for this post, the question of whether it’s good strategy for Dell and HP to place so much emphasis on their server businesses. We know that the server business faces high-end disruption from ODMs, which increasingly offer hardware directly to large customers such as cloud service providers, oil-and-gas firms,  and major government agencies. The OEM (or vanity) server vendors still have the vast majority of their enterprise customers as buyers, but it’s fair to wonder about the long-term viability of that market, too.

As ODMs take on more of the R&D and design associated with server-hardware production, they must question just how much value the vanity OEM vendors are bringing to customers. I think the customers and vendors themselves are asking the same questions, because we’re now seeing a concerted effort in the server space by vendors such as Dell and HP to differentiate “above the board” with software and system innovations.

Fear Petrifies

Can HP really become a dominant purveyor of software and services to enterprises and cloud service providers? Can Dell be successful as a major player in the data center? Both companies would like to think that they can achieve those objectives, but it remains to be seen whether they have the courage of their convictions. Would they bet the business on such strategic shifts?

Aye, there’s the rub. Each is holding onto a commoditized, low-margin PC business not because they like being there, but because they’re afraid of being somewhere else.

Exploring the Symbiosis Between Merchant Silicon and Software-Defined Networking

In a recent post at EtherealMind.com, Greg Ferro examined possible implications associated with the impending dominance of merchant silicon in the networking industry.

Early in his post, Ferro reproduces a Broadcom graphic illustrating that the major switch vendors all employ Broadcom’s Trident chipset family in their gear. Vendors represented on the graphic include Cisco, Juniper, Dell, Arista, HP, IBM (BNT), and Alcatel-Lucent.

Abyss Awaits

Custom switching ASICs haven’t gone the way of eight-track cartridges just yet, but the technology industry’s grim reaper is quickening his loping stride and approaching at a baleful gallop, scythe at the ready. Interrelated economic and technological factors have conspired, as they will, to put the custom ASIC on a terminal path.

There’s a chicken-and-egg debate as to whether economics occasioned and hastened this technological change or whether the causation was reversed, but, either way, the result will be the same. At some point, for switching purposes, it will become counterproductive and economically untenable to continue to design, develop, and incorporate custom ASICs into shipping products.

What’s more, the custom ASIC’s trip to the boneyard will be expedited, at least in part, by the symbiotic relationship that has developed between merchant silicon and software-defined networking (SDN).

Difficult Adjustment for Some

Commercially, of course, merchant silicon preceded SDNs by a number of years. Recently, however, the two have converged dynamically, so much so that, as Ferro acknowledges, future differentiation in networking will derive overwhelmingly from advances in software rather than from those in hardware. Vendors will offer identical hardware. They will compete on the basis of their software, including the applications and, yes, the management capabilities they bring to market.

For companies that have marketed and sold their products primarily on the basis of hardware speeds and feeds and associated features and benefits, the adjustment will be difficult.  The bigger the ship, the harder it will be to turn.

There are some caveats, of course. While seemingly inevitable, this narrative could take some time to play out.  Although the commercial success of merchant silicon was not contingent on the rise of software-defined networks, the continued ascent of the latter will accelerate and cement the dominance of the former. To the extent that the SDN movement — perhaps torn between OpenFlow and other mechanisms and protocols — fragments or is otherwise slowed in its progress, the life of the custom ASIC might be prolonged.

Timing the Enterprise Transition

Similarly, even if we presuppose that SDN technology and its ecosystem progress smoothly and steadily, SDN is likely to gain meaningful traction first with service providers and only later with enterprises. That said, the line demarcating enterprises and service providers will move and blur as applications and infrastructure migrate, in whole or in part, to the cloud. It’s anybody’s guess as to when and exactly how that transition will transform the enterprise-networking market, but we can see the outlines of change on the horizon.

Nothing ever plays out in the real world exactly as it does on paper, so I expect complications to spoil the prescience of the foregoing forecast.

Still, I know one thing for sure: As the SDN phenomenon eventually takes hold, the role of the switch will change, and that means the design of the switch will change. If the switch is destined to become a dumbed-down data-forwarding box, it doesn’t need a custom ASIC. Merchant silicon is more than up to that task.

Dell’s Bid for Data-Center Distinction

Since Dell’s acquisition of Force10 Networks, many of us have wondered how Dell’s networking business, under the leadership of former Cisco Systems executive Dario Zamarian, would chart a course of distinction in data-center networking.

While Zamarian has talked about adding Layer 4-7 network services, presumably through acquisition, what about the bigger picture? We’ve pondered that question, and some have asked it, including one gentleman who posed the query on the blog of Brad Hedlund, another former Ciscoite now at Dell.

Data Center’s Big Picture

The question surfaced in a string of comments that followed Hedlund’s perceptive analysis of Embrane’s recent Heleos unveiling. Specifically, the commenter asked Hedlund to elucidate Dell’s strategic vision in data-center networking. He wanted Hedlund to provide an exposition on how Dell intended to differentiate itself from the likes of Cisco’s UCS/Nexus, Juniper’s QFabric, and Brocade’s VCS.

I quote Hedlund’s response:

 “This may not be the answer you are looking for right now, but .. Consider for a moment that the examples you cite; Cisco UCS/Nexus; Juniper QFabric; Brocade VCS — all are either network only or network centric strategies. Think about that for a second. Take your network hat off for just a minute and consider the data center as a whole. Is the network at the center of the data center universe? Or is network the piece that facilitates the convergence of compute and storage? Is the physical data center network trending toward a feature/performance discussion, or price/performance?

Yes, Dell now has a Tier 1 data center network offering with Force10. And with Force10, Dell can (and will) win in network only conversations. Now consider for a moment what Dell represents as a whole .. a total IT solutions provider of Compute, Storage, Network, Services, and Software. And now consider Dell’s heritage ofproviding solutions that are open, capable, and affordable.”

Compare and Contrast

It’s a fair enough answer. By reframing the relevant context to encompass the data center in its entirety, rather than just the network infrastructure, Dell can offer an expansive value-based, one-stop narrative that its rivals — at least those cited by the questioner —  cannot match on their own.

Let’s consider Cisco. For all its work with EMC/VMware and NetApp on Vblocks and FlexPods, respectively, Cisco does not provide its own storage technologies for converged infrastructure. Juniper and Brocade are pure networking vendors, dependent on partners for storage, compute, and complementary software and services.

HP, though not cited by the commenter in his question, is one Dell rival that can offer the same pitch. Like Dell, HP offers data-center compute, storage, networking, software, and services. It’s true, though, that HP also resells networking gear, notably Brocade’s Fibre Channel storage-networking switches. The same, of course, applies to Dell, which also continues to resell Brocade’s Fibre Channel switches and maintains — at least for now — a nominal relationship with Juniper.

IBM also warrants mention. Its home-grown networking portfolio is restricted to the range of products it obtained through its acquisition of Blade Network Technologies last year. Like HP, but to a greater degree, IBM resells and OEMs networking gear from other vendors, including Brocade and Juniper. It also OEMs some of its storage portfolio from NetApp, but it also has a growing stable of orchestration and management software, and it definitely has a prodigious services army.

Full-Course Fare 

Caveats aside, Dell can tell a reasonably credible story about its ability to address the full range of data-center requirements. Dell’s success with that strategy will depend not only its sales execution, but also on its capacity to continually deliver high-quality solutions across the gamut of compute, storage, networking, software, and services. Offering a moderately tasty data-center repast won’t be good enough.  If Dell wants customers to patronize it and return for more, it must deliver a savory menu spanning every course of the meal.

To his credit, Hedlund acknowledges that Dell must be “capable.” He also notes that Dell must  be open and affordable. To be sure, Dell doesn’t have the data-center brand equity to extract the proprietary entitlements derived from vendor lock-in, certainly not in the networking sphere, where even Cisco is finding that game to be harder work these days.

Dell, HP, and IBM each might be able to craft a single-vendor narrative that spans the entire data center, but the cogency of those pitches are only as credible as the solutions the vendors deliver. For many customers, a multivendor infrastructure, especially in a truly interoperable standards-based world, might be preferable to a soup-to-nuts solution from a single vendor. That’s particularly true if the single-vendor alternative has glaring deficiencies and weaknesses, or if it comes with perpetual proprietary overhead and constraints.

Still Early

I think the real differentiation isn’t so much in whether data-center solutions are delivered by a single vendor or by multiple vendors. I suspect the meaningful differentiation will be delivered in how those environments are further virtualized, automated, orchestrated, and managed as coherent unified entities.

Dell has bought itself a seat at the table where that high-stakes game will unfold. But it isn’t alone, and the big cards have yet to be played.

Embrane Emerges from Stealth, Brings Heleos to Light

I had planned to write about something else today — and I still might get around to it — but then Embrane came out of stealth mode. I feel compelled to comment, partly because I have written about the company previously, but also because what Embrane is doing deserves notice.

Embrane’s Heleos

With regard to aforementioned previous post, which dealt with Dell acquisition candidates in Layer 4-7 network services, I am now persuaded that Dell is more likely to pull the trigger on a deal for an A10 Networks, let’s say, than it is to take a more forward-looking leap at venture-funded Embrane. That’s because I now know about Embrane’s technology, product positioning, and strategic direction, and also because I strongly suspect that Dell is looking for a purchase that will provide more immediate payback within its installed base and current strategic orientation.

Still, let’s put Dell aside for now and focus exclusively on Embrane.

The company’s founders, former Andiamo-Cisco lads Dante Malagrinò and Marco Di Benedetto, have taken their company out of the shadows and into the light with their announcement of Heleos, which Embrane calls “the industry’s first distributed software platform for virtualizing layer 4-7 network services.” What that means, according to Embrane, is that cloud service providers (CSPs) and enterprises can use Heleos to build more agile networks to deliver cloud-based infrastructure as a service (IaaS). I can perhaps see the qualified utility of Heleos for the former, but I think the applicability and value for the latter constituency is more tenuous.

Three Wise Men

But I am getting ahead of myself, putting the proverbial cart before the horse. So let’s take a step back and consult some learned minds (including  an”ethereal” one) on what Heleos is, how it works, what it does, and where and how it might confer value.

Since the Embrane announcement hit the newswires, I have read expositions on the company and its new product from The 451 Group’s Eric Hanselman, from rock-climbing Ivan Pepelnjak (technical director at NIL Data Communications), and from EtherealMind’s Greg Ferro.  Each has provided valuable insight and analysis. If you’re interested in learning about Embrane and Heleos, I encourage you to read what they’ve written on the subject. (Only one of Hanselman’s two The 451 Group pieces is available publicly online at no charge).

Pepelnjak provides an exemplary technical description and overview of Heleos. He sets out the problem it’s trying to solve, considers the pros and cons of the alternative solutions (hardware appliances and virtual appliances), expertly explores Embrane’s architecture, examines use cases, and concludes with a tidy summary. He ultimately takes a positive view of Heleos, depicting Embrane’s architecture as “one of the best proposed solutions” he’s seen hitherto for scalable virtual appliances in public and private cloud environments.

Limited Upside

Ferro reaches a different conclusion, but not before setting the context and providing a compelling description of what Embrane does. After considering Heleos, Ferro ascertains that its management of IP flows equates to “flow balancing as a form of load balancing.” From all that I’ve read and heard, it seems an apt classification. He also notes that Embrane, while using flow management, is not an “OpenFlow/SDN business. Although I see conceptual similarities between what Embrane is doing and what OpenFlow does, I agree with Ferro, if only because, as I understand it, OpenFlow reaches no higher than the network layer. I suppose the same is true for SDN, but this is where ambiguity enters the frame.

Even as I wrote this piece, there was a kerfuffle on Twitter as to whether or to what extent Embrane’s Heleos can be categorized as the latest manifestation of SDN. (Hours later, at post time, this vigorous exchange of views continues.)

That’s an interesting debate — and I’m sure it will continue — but I’m most intrigued by the business and market implications of what Embrane has delivered. On that score, Ferro sees Embrane’s platform play as having limited upside, restricted to large cloud-service providers with commensurately large data centers. He concludes there’s not much here for enterprises, a view with which I concur.

Competitive Considerations

Hanselman covers some of the same ground that Ferro and Pepelnjak traverse, but he also expends some effort examining the competitive landscape that Embrane is entering. In that Embrane is delivering a virtualization platform for network services, that it will be up against Layer 4-7 stalwarts such as F5 Networks, A10 Networks, Riverbed/Zeus, Radware, Brocade, Citrix, Cisco, among others. F5, the market leader, already recognizes and is acting upon some of the market and technology drivers that doubtless inspired the team that brought Heleos to fruition.

With that in mind, I wish to consider Embrane’s business prospects.

Embrane closed a Series B round of $18 million in August. It was lead by New Enterprise Associates and included the involvement of Lightspeed Venture Partners and North Bridge Venture Partners, both of whom participated in a $9-million series A round in March 2010.

To determine whether Embrane is a good horse to back (hmm, what’s with the horse metaphors today?), one has to consider the applicability of its technology to its addressable market — very large cloud-service providers — and then also project its likelihood of providing a solution that is preferable and superior to alternative approaches and competitors.

Counting the Caveats

While I tend to agree with those who believe Embrane will find favor with at least some large cloud-service providers, I wonder how much favor there is to find. There are three compelling caveats to Embrane’s commercial success:

  1. L4-7 network services, while vitally important cloud service providers and large enterprises, represent a much smaller market than L2-L3 networking, virtualized or otherwise. Just as a benchmark, Dell’Oro reported earlier this year that the L2-3 Ethernet Switch market would be worth approximately $25 billion in 2015, with the L4-7 application delivery controller (ADC) market expected to reach more than $1.5 billion, though the virtual-appliance segment is expected show most growth in that space. Some will say, accurately, that L4-7 network services are growing faster than L2-3 networking. Even so, the gap is size remains notable, which is why SDN and OpenFlow have been drawing so much attention in an increasingly virtualized and “cloudified” world.
  2. Embrane’s focus on large-scale cloud service providers, and not on enterprises (despite what’s stated in the press release), while rational and perfectly understandable, further circumscribes its addressable market.
  3. F5 Networks is a tough competitor, more agile and focused than a Cisco Systems, and will not easily concede customers or market share to a newcomer. Embrane might have to pick up scraps that fall to the floor rather than feasting at the head table. At this point, I don’t think F5 is concerned about Embrane, though that could change if Embrane can use NaviSite — its first customer, now owned by TimeWarner Cable — as a reference account and validator for further business among cloud service providers.

Notwithstanding those reservations, I look forward to seeing more of Embrane as we head into 2012. The company has brought a creative approach and innovation platform architecture to market, a higher-layer counterpart and analog to what’s happening further down the stack with SDN and OpenFlow.