SDN Controller Ecosystems Critical to Market Success

Software-defined networking (SDN) is a relatively new phenomenon. Consequently, analogies to preceding markets and technologies often are invoked by its proponents to communicate key concepts. One oft-cited analogy involves the server-based solution stack and the nascent SDN stack.

In this comparison, server hardware equates to networking hardware, with the CPU instruction set positioned as analogous to the OpenFlow instruction set. Above those layers, the server operating system is said to be analogous to the SDN controller, which effectively runs a “network operating system.” Above that layer, the analogy extends to similarities between server OS and network OS APIs and to the applications that run atop both stacks.

Analogies and Implications

Let’s consider the comparison of the server operating system to the SDN controller.  While the analogy is apt, it carries implications that prospective early adopters of SDN need to fully understand. As we’ve discussed before, SDN controllers based on OpenFlow today carry no guarantees of interoperability. An application that runs on one controller might not be available (or run) on another controller, just as an application developed for a Windows server might not be available on Linux (and vice versa).

Moreover, we don’t know how difficult it will be to port applications from one OpenFlow-based controller to another. It could be a trivial exercise or an agonizing one. There are many nagging questions, far fewer answers.

Keep in mind that this is an entirely different matter from the question of interoperability between OpenFlow-based controllers and switches. Presuming the OpenFlow standard is adhered to and implemented correctly in all cases, OpenFlow-based controllers on the market today should be able to communicate with OpenFlow-based switches.

But interoperability (or lack thereof) is an unwritten book at the layers where the SDN controller (an NOS akin to a server-based operating system) and the NOS APIs reside.  The poses a potential problem for the market development of a viable SDN ecosystem, at least for the enterprise market. (It’s not as much of an issue for the gargantuan service providers that drive the agenda of the Open Network Foundation; those companies have ample resources and will make their own internal standardization decisions relating to controllers and practically everything else that falls under the SDN rubric.)

Controller Derby

At SDNCentral, no fewer than seven open-source OpenFlow controllers are listed. Three of those controllers are Java based: Beacon, Floodlight, and Jaxon. The other open-source OpenFlow controllers listed at SDNCentral are FlowER, NodeFlow, POX, and Trema.  Additionally, OpenFlow controllers have been developed by several companies, including NEC, BigSwitch Networks (which offers a commercial version of the Floodlight controller), and Nicira Networks, which has built on the foundation of the Onix controller.

Interestingly, Google and Ericsson also have based their controllers on Onix. In a blog post last summer, Nicira CTO Martin Casado described Onix as a “general SDN controller” rather than an OpenFlow controller. Casado admitted that he was devising terminology on the fly, but he defined a “general SDN controller as “one in which the control application is fully decoupled from both the underlying protocol(s) communicating with the switches, and the protocol(s) exchanging state between controller instances (assuming the controllers can run in a cluster).” So, OpenFlow could be part of the picture, but it doesn’t have to be there; another mechanism could substitute for it.

Casado conceded that Onix is the right controller for many environments, but not for others. Wrote Casado:

There have been multiple control applications built on Onix, and it is used in large production deployments in the data centers, as well as in the access and core networks. However, it is probably too heavyweight for smaller networks (the home or small enterprise), and it is certainly too complex to use as a basic research tool.

Horses for Courses

So, there are horses for courses, and there are controllers for applications. Early indications suggest that it will not be a one-size-fits-all world. Nonetheless, at the end of his blog post, Casado expressed that opinion that “standards should be kept away” from controller design, and that the market’s natural-selection process should be allowed to run its course.

Perhaps that is the right prescription. It seems too early for leaden-footed standards bodies, such as the IETF and IEEE, to intervene. Nevertheless, customers will have to be wary. They’ll have to do their research, perform due diligence, and thoroughly understand the strengths, weaknesses, and characteristics of candidate controllers. Without assured controller interoperability, customers that adopt and deploy applications on one controller might have considerable difficulty shifting their investment and their software elsewhere.

Of course, if Google and the other major service providers who rule the roost at ONF want to expedite matters, they could publicly and aggressively endorse one or two controller platforms as de facto standards. But that’s probably unlikely, for a variety of reasons. Even if it were to happen, as Casado points out, any controller that proves favorable at large cloud service providers might not be the best choice for enterprises, especially smaller ones.

Opening for Networking’s Old Guard

At this point, it’s not clear how the SDN controller market will shake out. SDN controllers will struggle for sustenance not only against each other, but also against networking’s conventional distributed control planes already on the market, as well as so-called hybrid approaches — whereby the data path is jointly controlled by the conventional box-based control planes as well as by server-based controllers — that will be articulated and promoted by the major networking vendors, all of whom are keen to retard “pure SDN’s” advance from the environs of the largest cloud service providers to those of enterprise buyers. (As mentioned previously, the hybrid-control approach also is perceived by the ONF as a transitional necessity for customers seeking to move from their networks as they are constituted today to future SDN architectures.)

In that regard, the big networking powers are fortunate that the ONF’s early mandate is focused primarily, if not exclusively, on the requirements of the large cloud-service providers that populate its board of directors. The ambiguity surrounding controllers and their interoperability (or lack thereof) represents another factor that will dissuade enterprise buyers from taking an early leap of faith into the arms of SDN purveyors.

The faster the SDN market sorts out a controller hierarchy — determining the suitability and market prevalence of certain controllers in specific application environments — the sooner valuable ecosystems will form and enterprises will take serious notice.

For now, though, a shakeout doesn’t appear imminent.

3 responses to “SDN Controller Ecosystems Critical to Market Success

  1. Pingback: Does SDN Make My Network Management Look Fat? I SDNCentral

  2. Pingback: The Data Center Journal Juniper as an Alternative To Cisco And VMware

  3. Pingback: SDNは、マイネットワーク管理を見て脂肪を作りますか? I SDNCentral

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s